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Abstract  

Estimation of the term structure of interest rates has been a subject of study for a long time 

now. Most of the studies have focused on the model specification that gives the least error 

defined as the difference between the model price/yield and the market price/yield. The Mean 

Absolute Error has commonly been taken as a measure of goodness of fit.  In this paper, we 

study the modelling issues that would influence the performance of the parsimonious 

specification as given by Nelson Siegel and Svensson (1989) while constructing a zero coupon 

yield curve.  These issues relate to the choice between efficient optimization algorithms used 

to solve the non-linear specification, the impact of starting parameters defined in the 

optimization, the influence of the objective function specified and, the input price considered 

for estimating the curve. These issues are seen to have some influence in a market that is not 

sufficiently liquid over all the maturity segments.   
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1 INTRODUCTION 

The Government securities market is one of the critical components of any sovereign 

financial system. It is the primary borrowing avenue for the government and provides the 

benchmark to price other instruments in the debt market. It has also evolved to become the 

transmission channel for indirect instruments of monetary policy. The term structure of 

interest rates viz. the relationship between the yield and the term to maturity for the 

government securities market provides useful information about future movement in 

inflation, growth rate of the economy and is a mirror of market expectations. It is used by 

market participants for valuation purposes and the regulators for forecasting purposes.   

 

The Indian Government securities market is characterised by trading activity in certain key 

maturity tenors across the term structure, which warrants the need to adopt efficient term 

structure estimation models that can accurately fit these traded tenor points. The fitting of 

the term structure needs to take into consideration factors like accuracy, ease of 

implementation and reliability.  

 

Literature on term structure estimation has broadly developed into two directions- use of 

parametric and use of non-parametric models. While non-parametric models have looked 

at evolution of the long term rate from the short term rate, the parametric models aim to 

use multiple specifications for curve fitting across the term structure. 

 

The commonly used term structure estimation models are bootstrapping method, 

polynomial/exponential spline methods and the exponential functional form methods of 

Nelson and Siegel (1987) and Svensson (1994). While bootstrapping is easy to implement, 

it does not perform optimisation and therefore as it fits each zero coupon yield to the bond 

prices, it may not produce a smooth curve. Cubic spline overcomes this shortcoming by 

segmenting the term structure over a series of points and fixing constrains to the curve at 

these points, thus ensuring the continuity and smoothness of the fitted curves. However, 

cubic splines may result in overfitting and give unreasonably curved shapes for the term 

structure at the long end.   

 

The Nelson Siegel (NS) is a parametric model that uses exponential functions over the 

entire maturity range. The parameters are generally estimated by minimizing the sum of 

squared errors between the traded and model yields, subject to specific constraints, using 

an optimisation technique. The parameters can be interpreted as the long term rate, the 

slope, the curvature of the term structure. The Svensson model further refines the NS 

model by adding an additional flexibility which allows for broader and more complicated 

range of term structure shapes.  
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Most of the literature on term structure estimation has focused on the model specification. 

In this paper, the authors use the Nelson Siegel Svensson (NSS) specification to estimate 

the term structure for the Indian government securities market. The paper focuses on the 

modelling issues to be considered at the time of implementation, which would influence the 

performance of the NSS model. These include: 

 The Selection of the Optimisation Algorithm: This study examines the fit of the NSS 

model under alternative optimisation algorithms. The choice between a constrained 

versus an unconstrained optimisation technique and its impact on the parameter 

stability is explored. 

  The Choice of Starting Parameter Values: There has been little guidance in term 

structure literature on the ideal value of the starting parameters used to initialise an 

optimisation technique for yield curve estimation. This study puts in place alternative 

methods to determine the starting parameter values at the time of implementing the 

NSS model.  

 The Specification of the Objective Function:  The results of the yield curve estimation 

are also compared by way of implementing various objective function specifications.  

This includes minimising the sum of squared errors between the traded and model 

yields by assigning equal weights to all the errors. Alternative weighting schemes for 

the objective function by taking into account the size as well as the distribution of the 

errors are also explored.  

 The Input Price Specification: The choice of input data is a key driver of a well specified 

model. The results of the yield curve estimation are compared by selecting a price based 

on entire days’ trades, the last 3 trades only, and the last hour trades. 

 

The yield curve was estimated under the various specifications of the objective function, 

the optimization, the starting parameter selection and the choice of the input price; to zero-

in on a combination that would provide a best fit (viz. the model with the least objective 

function value), as well as parameter stability while implementing the NSS model. 

 

Hence, the objective of this paper is two-fold: 

1. To examine the modelling issues that would influence the performance of the 

parsimonious specification as given by NSS model while constructing a zero coupon 

yield curve.  These issues relate to the choice between efficient optimization algorithms 

used to solve the non-linear specification, the impact of starting parameters defined in 

the optimization, the influence of that objective function specified and the input price 

considered for estimating the curve. 

2. To create a historical database of the term structure of interest rates and the NSS 

parameters for the Indian government securities markets that can be used for macro 

and micro economic analysis.  
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This paper is organised as follows: Section 2 covers the published literature on the term-

structure. Section 3 describes the data and filtering criteria used. The estimation 

methodology and micro-structure specifications adopted while implementing the NSS 

model are described in Section 4. The key results are given in Section 5.  A historical 

database of the yield curve using the best specification of the NSS model for the Indian 

government securities market is provided in Section 6. Finally, Section 7 concludes. 

2 LITERATURE SURVEY 
There is a large body of literature on the specification of the best model to estimate the 

Zero Coupon Yield Curve (ZCYC).  The two broad lines of thought include the parametric 

(splines) and non-parametric specifications (one-factor stochastic interest rate evolution)1. 

Parametric models are defined by mathematical specification of splines which further 

categorized into two types the piece wise linear2/non-linear spline methods versus the 

parametric exponential methods as given by Nelson Siegel (1987) and Svensson (1994).  

Nelson and Siegel (1987) introduced a parametrically parsimonious model for yield curves 

that had the ability to represent the shapes generally associated with yield curves such as 

monotonic, humped, and S shaped. The authors noted the model explained a significant 

variation in bill yields across maturities during the period 1981-83. The model was also 

able to predict the price of the long-term Treasury bonds suggesting that the model 

captured important attributes of the yield/ maturity relation. 

Svensson (1994), estimates the forward interest rates with an additional hump parameter 

over the Nelson Siegel (1987) model and is commonly known as Nelson Siegel Svensson 

model. The study is done for Sweden for period of 1992-94.  The paper compares the NS 

and NSS for the two years comparing price error minimization with yield error 

minimization. The paper concludes that while the additional flexibility of the yield curve 

does improve the results there are days when the simple NS model does better. The 

objective function when specified as price error minimization was seen to have an adverse 

impact on the fit at the short end. 

For the Canadian Government bonds Market Bolder and Stréliski (1999) compared three 

yield curve models, namely Super-Bell, Nelson-Siegel (NS), and Nelson-Siegel Svensson 

Models (NSS). The study mainly deals with two key problems faced while constructing the 

yield curve. Firstly, the estimation problem, which implies choosing the best yield curve 

model specification by using multiple optimization techniques and alternative objective 

functions. Secondly, the paper considers the data problem, which involves selection of an 

                                                           
1
 Cox, Ingresoll, Rox (1985) family of models 

2
 McCulloch (1971, 1975), Vasicek and Fong (1982), Darbha, G., Roy S., and Pawaskar V. (2003a) 
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appropriate set of market data. Under this study a simple OLS is used for Super-Bell Model, 

while for NS and NSS Models a log-likelihood specification of objective function and sum of 

squared errors are used to minimize price errors. The authors note that the objective 

function, which involves minimize price errors, can result in overfitting of long term bond 

prices relative to short-term bond prices. Hence, in order to correct this problem, the 

authors used an inverse of duration as weights associated with each price error. The study 

shows that the log-likelihood specification of objective function is an efficient approach 

while fitting the yield curve model. The authors used data filtering criteria, which filters the 

market bond data based on amount outstanding, term to maturity, divergence of YTM from 

coupon rate and inclusion of T-bills into the sample data. The study finds that using 

benchmark data filtering criteria to filter market data can lead to better results. Among all 

three models, the NSS model using a log-likelihood objective function and partial 

estimation algorithm was chosen as the best alternative by authors.  

Subramanian (2001) studied the aspect of illiquidity in the GOI markets and the issue 

where yield curve estimation must include illiquid securities in the dataset. Pooling liquid 

and illiquid securities to estimate the term structure leads to errors in the estimation 

methodology. The author proposes the use of liquidity – weighted objective function for 

parameter estimation. The liquidity of individual securities is modelled using observable 

quantities like number and volume of trades in a security.  

Dutta et al. (2005) also discuss about the case that in the presence of market frictions 

individual securities can be priced differently from the ‘average’ pricing of the market. 

Hence the model price errors are caused for two reasons (a) curve fitting and (b) presence 

of liquidity premium. The errors due to curve fitting arise from the calculations and should 

be avoided. But errors due to the presence of liquidity premium is reflective of market 

conditions and are to be addressed by using a weighted error function, with weights based 

on liquidity. They propose a liquidity weighted objective function where the liquidity 

function is specified using the exponential and hyperbolic tangent function to provide 

robust term structures in the Indian government securities markets.   

Virmani, (2006) addresses issue with numerical optimization techniques for estimation and 

the sensitivity of results to the choice of initialization of the optimization routine. The study 

concludes that choice of starting values of the parameters is crucial for the solution 

obtained where the objective function value is at its minimum. The study shows that there 

exist regions in the shape of the objective function where a slight change in (seemingly 

reasonable) initial vector takes one far from optimum. The paper recommends a grid of 

reasonable starting values to be chosen and shape of the objective function value be 

assessed as the parameters are varied before narrowing down on a subset for which the 

objective function turns out to be at its minimum.  
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Garcia & Carvalho (2019) calibrated the NSS model for 20 countries, mostly Eurozone, to 

evaluate application of the NSS model under negative yield regimes.  For forecasting 

purpose, the authors classified data into short, intermediate, and long-term maturities. The 

authors defined β1 and β1+β2, parameters of the NSS model, as Interest Rate of a Very 

Distant Future (IRVDF) and Instantaneous Interest Rate (IIR), respectively. The study 

shows that difference between theoretical and observed values of the IIR is minimum as 

compare to the IRVDF. The authors find that the difference between theoretical and 

observed values of IIR and IRVDF, for all 20 countries, follows a normal and leptokurtic 

distribution, respectively. The study also observes that due to instability of monetary policy 

and the volatility of short-term interest rate the forecasting and fitting of yield curve model 

for short term data is difficult relative to intermediate and long-term data. The authors 

concluded that the NSS model is valuable tool to fit yield curves with negative yields. 

Per Nymand-Andersen (2018) recommended the conceptual framework on extracting high-

quality market data and applying statistical tests to evaluate and select an efficient yield 

curve model. The author used NS and NSS as parsimonious models, and Waggoner and 

Variable Roughness Penalty as class of cubic spline methods. The study uses Weighted 

Mean Absolute Errors, Root Mean Squared Errors and Hit-Rate as goodness of fit measures 

to evaluate yield curve models. The study shows that the NSS model provides a better 

goodness of fit under parsimonious class models, whereas Waggoner model showed an 

improvement in the results in case of cubic spline method. The author concluded that even 

though the spline based methods provide yield curve with slightly better goodness of fit as 

compare to the NSS model, the NSS model was better choice over all the other models as 

results produce by the NSS model were more transparent, communicative, and easy to 

interpret. 

An estimation of the yield curve is a non-linear optimization problem. However, the issues 

which appear from optimization side are generally neglected and much focus is given 

towards various models which represent the yield curve. To address these issues the 

Manousopoulos and Michalopoulos (2009), for Greek secondary bonds market, examine the 

NS and NSS models by using various optimization algorithms from group of Direct Search, 

Gradient Based, and Global optimization algorithms. The authors found that the direct 

search and global optimization algorithms outperform gradient based optimization 

algorithms in terms of average yield errors. The gradient-based optimization algorithms 

are generally dependent on starting points and they are restricted to find solution near the 

starting points whereas, direct search and global optimization algorithms explore large 

region of a search space. Thus, the studies suggests estimating yield curve using a direct 

search/ global optimization algorithms as a first step, and later refine the solution using 

gradient based optimization algorithm as a second step. 
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3 DATA  

3.1 Data Description  

The Indian bond market consists of Treasury bills (T-bills) issued by the central bank, 

Reserve Bank of India (RBI), through a pre-announced quarterly borrowing calendar. 

Treasury bills are issued for durations of 91, 182 and 364 days. Additionally, Treasury bills 

of any intermediate tenor, called Cash Management Bills (CMBs) are also issued by the RBI 

based on the extant liquidity requirements. Central government dated securities are issued 

by the RBI through auctions based on a pre-announced semi-annual borrowing calendar. 

The issuances of these securities are largely reissues of existing securities, with a few new 

issuances. Due to the expansion of the Indian economy, growth in number of participants 

and development of settlement and trading infrastructures, there has been a steady 

increase in the depth and volumes in this market (Table 1). 

Table 1: Year-wise Summary Statistics of Turnover Ratio and Average Daily Volumes 

 Period 
2009-

10 
2010- 

11 
2011- 

12 
2012- 

13 
2013- 

14 
2014-

15 
2015-

16 
2016-

17 
2017-

18 
2018-

19 
2019-

20 
Turnover 
Ratio 

121.4
6 107.87 110.72 181.21 214.17 219.81 187.40 309.36 184.67 137.61 174.31 

Avg. Daily 
Volumes 
(Rs. Cr.) 12243 11623 14656 27353 37011 42853 40367 70017 47302 38657 54993 
*Turnover ratio =  Volume / Outstanding; Source: CCIL Calculations 

 

As of 2020 securities of maturity upto 40 years are outstanding in this market. In addition 

to fixed income securities, Floating Rate Bonds, Inflation Index Bonds and Special securities 

are the other securities which are currently outstanding. Trading in Treasury Bills and 

government securities takes place either on the anonymous electronic trading platform of 

NDS-OM3 or bilaterally with reporting on NDS-OM. Trading, especially in the recent period 

is largely concentrated specifically around the benchmark 10 year security (Table 2). 
Table 2: Tenor-wise Analysis of Trading in Dated Government Securities   (%) 

Financial 
Year 

<= 3 
years 

>3 -7 
years 

>7-10 
years 

>10 - 15 
years 

>15 -20 
years 

> 20-25 
years 

> 25- 30 
years 

> 30 
years 

 2009-10 9.93 30.96 34.31 18.66 3.95 0.82 1.37 0.00 
2010-11 4.30 21.13 33.48 36.22 3.31 0.76 0.79 0.00 
2011-12 1.18 8.83 54.81 31.67 2.27 0.27 0.95 0.02 
2012-13 0.51 7.01 40.41 45.13 4.77 0.46 1.69 0.02 
2013-14 1.08 13.57 43.18 37.99 2.98 0.14 1.05 0.01 
2014-15 1.03 12.74 52.84 29.96 1.76 0.07 1.58 0.01 
2015-16 2.59 15.98 52.05 25.37 2.00 0.17 1.82 0.04 
2016-17 3.16 10.74 47.10 36.35 1.21 0.18 1.12 0.13 
2017-18 3.50 10.63 46.08 36.64 1.92 0.21 0.80 0.23 
2018-19 6.37 13.19 70.46 8.23 0.96 0.24 0.33 0.22 
2019-20 9.06 19.89 61.95 7.27 0.44 0.63 0.36 0.40 

Source: CCIL 

                                                           
3
 Negotiated Dealing System – Order Matching – Anonymous trading platform for secondary market government 

securities transactions 
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Table 3 gives the maturity bucket wise turnover ratio. The ratio indicates that there is a 

concentration of trading in the benchmarks, generally in the 6 to 11 year bucket. 
Table 3: Tenor Wise Turnover Ratio  

 Period 
2009-

10 
2010-

11 
2011-

12 
2012-

13 
2013-

14 
2014-

15 
2015-

16 
2016-

17 
2017-

18 
2018-

19 
2019-

20 
0 to <3 Years  54.46 42.14 8.34 5.87 106.73 15.65 32.46 77.05 47.47 49.16 56.25 
>=3 to <6 Year 69.87 43.71 9.02 39.51 83.38 102.15 111.75 115.18 74.73 104.22 188.51 
>=6 to <9 Year 112.45 30.42 69.98 128.82 271.28 234.89 244.02 538.87 133.11 374.51 396.92 
>=9 to <11 Year 393.44 277.25 479.91 300.46 2150.27 958.16 540.46 257.29 538.39 86.45 323.87 
11+ Years  47.06 103.97 80.91 245.12 288.33 163.89 127.07 263.37 156.43 36.57 45.25 

* Turnover ratio =  Volume / Outstanding. Source: CCIL 
 

 

For the purpose of this study, securities traded during the period of 2009-10 to 2019-20 

have been considered. The secondary market information on traded prices and yields, 

volume and number of trades is taken from NDS-OM. The 11-year period covers significant 

events that have had an impact on the Indian bond market, like the benign interest rate 

scenario of 2009 following the Global Financial Crisis, capital account crisis of 2013, the 

demonetisation period after November 2016, and beginning of the covid-19 pandemic.  

3.2 Approaches to Data Filtering 

The following data filtering criteria was adopted for the purpose of estimating the yield 

curve: 

3.2.1 Security Selection 

The starting point of the current study, which aims to develop the best fit model to estimate 

the yield curve, is security selection. T-bills, CMBs, along with dated government securities 

of maturity less than 1 year have been considered as short term securities. For the longer 

term, the goal is to use similar dated securities, with no special features that would affect 

their prices. In other words, the dated securities used in the study would ideally differ only 

in terms of their coupons and maturities. Therefore traded bonds with the following 

features are excluded from computation: 

 All Floating Rate and Inflation Index bonds. 

 Special securities like Oil Bonds, Fertilizer Bonds, and other bonds issued to specific 

institutions.  

 All Principal and Coupon Strips. 
 

3.2.2 Month-end Prices 

As a precursor, the entire analysis was carried out on both a daily basis and monthly basis 

for the two year period from 2017-18 to 2019-20. It was found that the prices of the 

security as on the end of month were a good representation of the daily behavior of the 

security price through the month. Further, as the central bank norms for valuation of liquid 

securities in banks portfolio mandates valuation of such securities on a monthly basis, 
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there is also a possibility that the month-end data could have a higher quantum of traded 

securities, minimizing the possibility of in-sample errors. Hence the analysis was done on 

end-of-month basis for the entire sample period of 2009-10 -2019-20 for the purpose of 

evaluating each combination of the objective function, optimization, boundary condition 

and input price selection. On selecting the ideal combination, the historical NSS parameters 

were then estimated taking the daily price series for the full sample period of 2009-10 to 

2019-20.   
 

3.2.3 Securities with Standard Market Lot and Minimum 3 trades  

The standard market lot for trading in the dated securities is Rs. 5 Crore (Rs. 50 million). 

There are trades that can happen in “odd-lots” i.e. lower than the lot size. A filter on 

securities is applied such that the trades of securities selected are of minimum Rs. 50 

million.  It is often challenging to filter purely on the basis of liquidity considerations. 

Hence, the data has been filtered to securities with a minimum of 3 trades on a given day. 

This basic filter is put in place to ensure that off-market prices of illiquid securities 

(securities with less than 3 trades) do not influence the optimization results. Table 4 gives 

the number of securities traded before applying a minimum 3 trades filtering criteria. A 

comparison of the number of securities trade post the minimum 3 trades filter is presented 

in Table 5. 
Table 4: Number of Securities Traded in each maturity bucket  

 Period 
2009- 

10 
2010- 

11 
2011- 

12 
2012- 

13 
2013- 

14 
2014- 

15 
2015- 

16 
2016- 

17 
2017- 

18 
2018- 

19 
2019- 

20 

0 to <3 Years  98 78 98 96 123 116 109 119 119 137 158 
>=3 to <6 Year 13 16 8 12 12 12 16 17 17 19 19 
>=6 to <9 Year 9 10 5 8 8 12 14 16 13 13 17 
>=9 to <11 Year 4 5 5 6 6 5 9 9 11 9 10 
11+ Years  17 11 11 15 20 21 26 31 27 25 28 
Total 141 120 127 137 169 166 174 192 187 203 232 

  
Table 5: Number of Securities Traded in each maturity bucket with 3 trades Filter 

 Period 
2009- 

10 
2010- 

11 
2011- 

12 
2012- 

13 
2013- 

14 
2014- 

15 
2015- 

16 
2016- 

17 
2017- 

18 
2018- 

19 
2019- 

20 

0 to <3 Years  54 35 43 49 67 66 60 71 64 73 89 
>=3 to <6 Year 9 9 6 8 8 7 9 17 15 17 17 
>=6 to <9 Year 8 6 3 5 8 8 11 14 13 12 14 
>=9 to <11 Year 3 3 5 4 6 5 7 8 10 7 6 
11+ Years  11 11 10 14 17 18 23 29 26 23 27 
Total 85 64 67 80 106 104 110 139 128 132 153 

 

 

3.2.4 Time Filter 

The estimation of term structure of interest rates relies on the availability of traded prices 

at any given point of time during the day. This would require that the security is traded 
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frequently throughout the day with reasonable volumes.  Table 6 provides the average 

number of securities traded in hourly intervals throughout the day.  

Table 6: Average Number of Securities Traded in Each Time Bucket 
Time interval 
(Hours) 

2009-
10 

2010-
11 

2011-
12 

2012-
13 

2013-
14 

2014-
15 

2015
-16 

2016
-17 

2017
-18 

2018-
19 

2019-
20 

9AM-10AM 6 6 6 9 9 10 14 14 12 7 13 
10AM-11AM 8 7 6 11 9 14 17 19 15 11 14 
11AM-12PM 9 7 7 13 10 15 18 22 16 13 17 
12PM-1PM 9 7 7 12 11 17 20 22 19 14 19 
1PM-2PM 9 8 7 12 13 16 21 23 21 13 18 
2PM-3PM 9 9 8 14 14 19 23 27 25 19 22 
3PM-4PM 11 10 10 16 15 20 26 29 28 18 29 
>4PM 13 12 11 16 17 22 31 34 33 25 34 

The above table indicates that the trading is not uniform throughout the day. In addition, 

the price could also be influenced by news that would be available during the day.  Hence it 

would be pertinent to consider alternative price inputs to arrive at an “appropriate price” 

for estimating the yield curve. Specifically, three price inputs are considered: 

 The value weighted average price of all the trades in a security during the day 

 The value weighted average price of the last 3 trades in a security during the day 

 The value weighted average price of all the trade in a security during the last hour 

of trading. 

 

4 METHODOLOGY 
The term structure of interest rates has multiple applications and is used in areas such as 

valuing bond portfolio, determining appropriate trading strategies, capturing market risk, 

etc. Hence it is important to get a parsimonious model that would capture all the possible 

shapes of the yield curve. It is desirable that the implied forward rates are smooth and do 

not have any sharp kinks. The NS and the further improved NSS models have become 

popular due to the flexibility that they offer to determine the shape of the forward rates 

and hence the implied spot rates. The specification captures a monotonic form, humps at 

various areas of the curve and S-shapes. In this section the authors provide an overview of 

these two models and elaborate on the methodology adopted while estimating the ZCYC 

model. 

4.1 Nelson Siegel Model   

The NS model builds on the forward rate specification and integrates the same to get the 

spot rate.  It ensures that smooth forward rates are derived on estimation. Nelson Siegel 

(1987) in their paper had focused on data that primarily encompassing Treasury Bills 

(securities dated less than a year) and uses only monthly data. The initial model 
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specification is on the forward rates which are integrated to give the interest rate function 

as a combination of three terms:   

𝑟(𝑇) = 𝛽0 +
𝛽1(1 − 𝑒−𝑇/𝜏)

(
𝑇
𝜏)

+ 𝛽2(
(1 − 𝑒−𝑇/𝜏)

(
𝑇
𝜏)

− 𝑒−𝑇/𝜏) 

…(1) 

β0, β1, β2, and τ are the constant parameters and T is the time to payment of the cash flow in 

annual units. The first term is constant, equals β0 and defines the long-term level of zero 

rates, because the contribution of the other two terms diminishes as T approaches infinity. 

It remains constant for the entire term to maturity. The second term β1 introduces an 

exponential time decay that becomes slower as τ increases. It has an impact on short 

maturities. The third term produces either a hump (if β2 is positive) or a trough (if β2 is 

negative) that occurs at a time governed by τ. Its impact increases with maturity, reaches a 

peak and then decays to zero.   

4.2 Nelson Siegel Svensson Model 

The NSS model was developed to provide additional flexibility to the NS curve. It adds an 

additional term to the existing Nelson Siegel specification with an additional local 

extremum along the maturity profile. The model for spot rate as derived by integrating the 

forward rate specification is given as: 

𝑟(𝑇) = 𝛽0 +
𝛽1(1 − 𝑒−𝑇/𝜏1)

(
𝑇
𝜏1)

+ 𝛽2(
(1 − 𝑒−𝑇/𝜏1)

(
𝑇
𝜏1)

− 𝑒−𝑇/𝜏1) + 𝛽3(
(1 − 𝑒−𝑇/𝜏2)

(
𝑇
𝜏2)

− 𝑒−𝑇/𝜏2) 

… (2) 

Where β0, β1, β2, β3, τ1 and τ2 are the constant parameters and T is the time to payment of 

the cash flow in annual units. The terms β3 and τ2 are the two additional parameters that 

provide an additional hump or a trough so as to provide flexibility of yield curve to be 

captured. This can be useful in improving the fit of yield curve.  

The Nelson Siegel Svensson parsimonious models discussed here assume that the 

instantaneous forward rate is the solution to a second-order differential equation with two 

equal roots. The spot rate is derived by integrating the forward rate function. The discount 

function is derived from the spot rates as: 

𝛿𝑖 = exp⁡(−𝑟𝑡 ∗ 𝑡)       …(3) 

Where, 𝛿𝑖 is the discount factor, 𝑟𝑖 is the spot rate for a given time to maturity⁡𝑡. 
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The discount function is used to compute the model price of the bond (viz. spot price), 

given as the sum of discounted coupon payments, 𝐶𝑖, payable at time i =1 to T and the 

present value of the redemption value to be paid at maturity T. The model price for bond 𝑏 

is therefore given as:  

𝑀𝑜𝑑𝑒𝑙⁡𝑃𝑟𝑖𝑐𝑒(𝑏) = ∑ 𝐶𝑖
𝑇
𝑖=1 𝛿𝑖 + 100⁡𝛿𝑇     …(4) 

The model yield to maturity (YTM) is then estimated as an internal rate of return for the 

bond 𝑏 that makes the present value of the coupon payments and the face value equal to 

the model price of that bond: 

𝑀𝑜𝑑𝑒𝑙⁡𝑃𝑟𝑖𝑐𝑒(𝑏) =∑
𝐶𝑖

(1 + 𝑀𝑜𝑑𝑒𝑙⁡𝑌𝑇𝑀)𝑡𝑖

𝑇

𝑖=1

+
100

(1 +𝑀𝑜𝑑𝑒𝑙⁡𝑌𝑇𝑀)𝑇
⁡ 

…(5) 
Where,  

 𝑀𝑜𝑑𝑒𝑙⁡𝑃𝑟𝑖𝑐𝑒(𝑏) is the spot price for bond 𝑏 derived from the NSS model. 

 𝐶𝑖 is the coupon payment payable at time i =1 to T 

 𝑀𝑜𝑑𝑒𝑙⁡𝑌𝑇𝑀(𝑏) is the model yield to maturity derived from the model price. 

 

The parameters are estimated by minimizing the objective function, viz. the sum of squared 

errors between the traded and model price or yields, subject to specific constraints, using 

an optimisation technique. 

The Nelson Siegel (1987) paper fixed the value of Tau parameter, to allow for a linear 

equation and determines the best model based on the lowest MAE. The literature since 

then has evolved to allow for non-linear optimization by imposing appropriate constraints 

on the parameters.  This estimation of the parameters is based on the standard 

methodology well defined in literature and involves the following steps:   

i. Fix the vector of starting parameters [𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝜏1, 𝜏2] for the first iteration. 

ii. Determine the instantaneous forward rate, zero coupon spot rates and discount factor 

functions using these starting parameters. 

iii. Use the discount factors to determine the present value of the bond cash flows which 

are summed to give the model bond price. 

iv. Compute the model YTM for each bond 𝑏 from model bond price. 

v. Calculate yield errors taking the squared difference between the theoretical YTM and 

traded yield YTM. 

vi. Use a numerical optimization procedure to minimize the objective function for 

constraints on the short and long term rate to determine the new vector of parameters. 

vii. Use the new vector of parameters and repeat steps (ii) to (vi) until the objective 

function in minimized.  
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4.3 Optimization Techniques 

4.3.1 Constrained Optimization by Linear Approximation (COBYLA)  

The COBLYA is a local search, derivative free constrained optimization method. It optimizes 

an actual constrained optimization problem by approximating with a linear programing 

problem. The iterative linear approximation of the optimal solution of optimization 

problem is based on the method of Nelder and Mead (1965). It constructs a linear 

approximation of the objective function and constraints over simplex of n+1 points and 

optimizes these approximations in a trust region at each successive iteration. As the 

algorithm proceeds in direction of optimum solution, the trust region radius also gets 

modified accordingly. The COBYLA minimizes an objective function using inequality and 

equality constraints where it converts equality constraints in a form of inequality 

constraints. 

4.3.2 Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) 

The L-BFGS is an unconstrained optimization algorithm in the class of Quasi-Newton 

methods which approximates the BFGS algorithm. It is called limited memory method 

because the algorithm uses only low rank approximation of the Hessian matrix inverse 

instead of the entire Hessian inverse. The L-BFGS algorithm at each iteration, is a line-

search, that is, a search along a ray in the variables, with the search direction computed 

from the approximate Hessian inverse. The L-BFGS is gradient-based method where 

gradient of an objective function is calculated numerically if not specified. This algorithm is 

well suited for optimization problem with many variables. 

 

4.4 Objective Function in Term Structure Estimation 

The objective function can be defined either in the price space or the yield space as the sum 

of square of the price or yield errors4. In this study, the errors are defined as the difference 

between the market YTM and model YTM. The estimation is done using maximum 

likelihood.  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑(𝑀𝑜𝑑𝑒𝑙⁡𝑌𝑇𝑀⁡(𝑏) − 𝑀𝑎𝑟𝑘𝑒𝑡⁡𝑌𝑇𝑀(𝑏))
2

𝑁

𝑏=1

 

…(6)  

                                                           
4
 Studies have indicated that using price errors have results in large yield errors for bonds and bills with short 

maturities as the prices are very insensitive to yields at short maturities.  Hence it may be better to choose the 
parameters that minimize yield errors. This is also in sync with the monetary policy analysis that focusses on 
interest rates rather than prices. (Svensson, 1994). 
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Where,  

 𝑀𝑜𝑑𝑒𝑙⁡𝑌𝑇𝑀⁡(𝑏) is the yield to maturity derived from the model price of the bond 𝑏. 

 𝑀𝑎𝑟𝑘𝑒𝑡⁡𝑌𝑇𝑀(𝑏) is the yield to maturity derived from the market price of the bond 

𝑏. 

 

While formulating the objective function, the errors used in the estimation procedure can 

be assigned equal weights or a weighting scheme could be designed to account for certain 

characteristics of the securities used in the input sample such as their liquidity. 

Additionally, the objective function can also be modified to take into account the 

distribution of the errors.  

4.4.1 Objective Function Using Liquidity Weights  

As illiquid securities might exhibit greater price/yield errors as compared to the liquid 

securities (since the prices of illiquid securities might account for a liquidity premia), a 

failure to incorporate liquidity of the securities at the time of estimation, could result in a 

difficulty to disentangle this liquidity premia from the model errors due to curve fitting. 

Hence, assigning higher weights to the liquid securities vis-à-vis illiquid securities and 

using the same in the objective function is expected to improve the fit of the resultant yield 

curve.   

While, the weights for liquidity of securities can be defined by the reciprocal of their bid-

ask spreads, a continuous series of bid-ask spread data at a regular frequency might not be 

available, especially for illiquid securities. Hence, literature has suggested various weights 

based on volume and number of trades in the securities (Subramanian (2001), Dutta et.al. 

(2005)). As such, the weights can be defined as: 

𝑊𝑖 =

((1−𝑒
(−

𝑣𝑖
𝑣𝑚𝑎𝑥

)
)+(1−𝑒

(−
𝑛𝑖

𝑛𝑚𝑎𝑥
)
))

∑ 𝑊𝑖
𝑁
𝑖=1

           …(7) 

 

Where, 

 𝑣𝑖  and⁡𝑛𝑖 ⁡are defined as the value of trade and the number of trades for the 𝑖𝑡ℎ 

security.  

 𝑣𝑚𝑎𝑥 and 𝑛𝑚𝑎𝑥 are the maximum value and the maximum number of trades for all 

the securities traded for the 𝑖th day, respectively. 

Using the above specification, securities with a lower number of trades (value) would be 

assigned a lower weight as compared to the securities with a higher number of trades 

(value). 
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4.4.2 Objective Function Using M-estimation weights 

The resultant yield curve estimates can behave poorly when the errors are not normally 
distributed, particularly when the errors are heavy-tailed. In such cases, instead of 
removing such influential observations from the estimation process, one can consider using 
a weighting scheme in the objective function criterion that assigns lower weights to errors 
at the tails.  In this paper, the Huber’s M-estimation technique is selected for defining the 
weights associated with the yield errors and is explained as follows: 
 
Step 1: Obtain a vector of yield errors,⁡[𝑒1, 𝑒2…⁡𝑒𝑛]

′ and the NSS parameters, by 
minimizing the objective function (sum of squared yield errors), by assuming equal weights 
to all the errors. 
 
Step 2: Estimate the weights using Huber’s M-estimation based on the vector of yield 
errors, obtained in Step 1, by defining the following variables: 
 

Table 7: Derivation of Huber’s M-estimation Weights 
Sr. No. Variable Equation 

1 Mean of Vector of Yield Errors  �̅� =
∑ 𝑒𝑖
𝑛
𝑖=1

𝑛
 

2 Mean Absolute Residual 𝑀𝐴𝑅 = |𝑒𝑖 − 𝑒|̅ 

2 Median of MAR 𝑚𝑑 = 𝑀𝑒𝑑𝑖𝑎𝑛 (
𝑀𝐴𝑅

0.6745
) 

3 Tuning Constant 𝑘 = 1.345 ∙ 𝑚𝑑 

4 Absolute Scaled Errors 𝑎𝑏𝑠𝑒𝑖 = ⁡ |
(𝑒𝑖 −⁡�̅�)

𝑚𝑑
| 

5 Huber's Weight Function 𝑤(𝑒𝑖) = {

1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑎𝑏𝑠𝑒𝑖 ≤ 𝑘
𝑘

𝑎𝑏𝑠𝑒
⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡⁡𝑎𝑏𝑠𝑒𝑖 > 𝑘

 

6 
Weighted Squared Error  
 

𝑤𝑠𝑒 = ∑𝑤𝑖
2 ∙ 𝑒𝑖

2

𝑛

𝑖=1

 

7 Weighted Average Error 𝑤𝑎𝑒 =
∑ 𝑤𝑖 ∙ 𝑒𝑖
𝑛
𝑖=1

∑ 𝑤𝑛
𝑖

 

8 Tolerance limit 10^-16 

 
The tuning constant is picked to give reasonably high efficiency, so, k is defined as 1.345σ 

(where σ is the standard deviation of the errors) which produce 95% efficiency when the 

errors are normal, and still offer protection against outliers. Usually a robust measure of 

spread is used in preference to the standard deviation, wherein a common approach is to 

take σ= MAR/0.6745, where MAR is the median absolute residual (see Fox and Weisberg, 

2013 and Ruckstuhl, 2016). 5 

The optimal weights using Huber’s M-estimation are arrived at by using an iterative 
process. For the first iterative process, the absolute scaled error (𝑎𝑏𝑠𝑒𝑖) is computed as the 
deviation of the sample errors from the simple average error �̅� (and scaled by md). For 
subsequent iterations, the⁡𝑎𝑏𝑠𝑒𝑖⁡is computed as the deviation of the sample errors from the   
                                                           
5
 In this study, the MAR is computed as the mean absolute deviation. 
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𝑤𝑎𝑒 obtained in the previous iteration (and scaled by md). The iterative process would 
continue so long as the difference between the 𝑤𝑠𝑒 obtained from the current and that 
obtained previous iteration reaches the tolerance limit. 
 
Step 3: Re-estimate the ZCYC yield curve by using the NSS parameters obtained in Step 1 as 
the starting parameters and the optimal weights obtained in Step 2 to minimize the 
weighted yield errors. 
 

4.4.3 Lorentzian Specification of Errors in the Objective Function  

The field of robust statistics is primarily concerned with estimation problems, in which the 
data contains gross errors, or outliers that do not conform to the statistical assumptions for 
the majority of the data (e.g., Gaussian noise) 6. The main goals of robust statistics are 
therefore to: 

1. Describe the structure best fitting the bulk of the data. 
2. Identify deviating data points (outliers). 

 
In our context, a robust statistic function 𝜌(∙) can be applied on the squared yield errors to 
improve the robustness of the results from the yield curve estimation. One such robust 
statistic function that can be considered is the Lorentzian error norm. The Lorentzian error 
norm can be expressed as: 
 

𝜌(𝑧𝑖, 𝜎) = log (1 +
1

2
(
𝑧𝑖

𝜎
)
2

)                   …(8) 

 
 
Where, 
𝑧 is the difference between the  market yield and model yield. 
𝜎 is a threshold value. Threshold value is defined as 1 in this study. 
 
The Lorentzian error function is less sensitive to outliers, since the function increases less 
rapidly when the value of the squared error terms exceed beyond a threshold value. Having 
expressed the squared errors using the Lorentzian form, we attempt to minimize the 
objective function as indicated below:   
 

𝐿𝑜𝑟𝑒𝑛𝑡𝑧𝑖𝑎𝑛⁡𝑒𝑟𝑟𝑜𝑟⁡𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =∑𝜌(𝑧𝑖, 𝜎)

𝑛

𝑖=1

 

…(8) 

4.5 Choice of Starting Parameters and Boundary Conditions 

The search algorithm used in the estimation is across a non-linear curve that uses the 

various non-linear optimization algorithms. There are certain choices that are needed to be 

made with respect to the starting parameter before implementing the optimization   

                                                           
6
 Heeger (1998) 
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process. Additionally, reasonable bounds are generally put in place for these parameters, to 

avoid the slowing down of the search process. This paper, tests for the sensitivity of the 

optimization solution to the starting parameters, by applying three alternatives approaches 

for defining the starting parameter values and the associated boundary conditions for 𝛽0 

and 𝛽1: 

 Arbitrary starting parameters: In this approach, the starting parameters for 𝛽0 and 𝛽1 

are not linked to the historical behavior of interest rates, but are defined arbitrarily. 

Additionally, the associated boundary conditions are not linked to the starting 

parameter values. 

 

 Static starting parameters: In this approach, the starting parameter of 𝛽0 is estimated as 

the average of the long term interest rate over the last 6 month period. The starting 

parameter for 𝛽1 is defined as the difference between the average value of the long term 

and that of the short term interest rate over the last 6 month period.7 The starting 

parameters once decided would be fixed for the next 6 months. In this method the 

boundary conditions for 𝛽0 and 𝛽1 are defined as +/- 3% from its starting parameter 

values.  

 

 Dynamic starting parameter: In this approach, the starting parameter of 𝛽0 is estimated 

as the 6 month rolling average of the long term interest rate observed the last 6 month 

period. Likewise, the starting parameter for  𝛽1 is defined as difference between the 6 

month rolling average value of the long term and that of the short term interest rate. 

The starting parameter values are revised on a monthly basis. The boundary conditions 

for  𝛽0 and 𝛽1 are defined as +/-3% from its starting parameter values.  

4.6 Traded Price Input 

Three alternative price inputs to arrive at an “appropriate price” for estimating the yield 

curve were considered: 

 Value weighted average traded price (VWAP) for the Full day: This would represent the 

average traded price by giving greater weightage to securities with the maximum value 

for the given day. It provides a benchmark to the market players to move in or out of 

the asset with as small of a market impact as possible. The traders would try to buy 

below the VWAP or sell above it thus maintaining the average levels. The VWAP levels 

are also used to indicate the trend in the prices of the underlying security.  

  

                                                           
7
 The daily long term interest rate is calculated as the value weighted average rate of dated GOI securities with a 

maturity greater than 9 years. The daily short term interest rate is calculated as the value weighted average rate of 
all treasury bills, cash management bills and dated GOI securities with a maturity of less than and equal to 1 year. 
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 VWAP for the Last Trading Hour: This price captures the latest information context just 

before the market closes and serves as a useful reference price on days when there have 

been significant changes in prices since the beginning of the trading session. 

 

 VWAP for Last 3 Traded Prices: This price represents the value weighted average of the 

last three trades. 

5 EMPIRICAL RESULTS:  
Based on the methodology specified above, the NSS model was estimated on a month end 

basis from 2009-10 to 2019-20. In this section, the results are provided keeping in view 

that stability of parameters and the yield errors over time are the major considerations for 

evaluating the goodness-of-fit of the model. The goodness-of-fit of the models is captured 

by the mean absolute yield error and the standard deviation of the long rate and that of the 

short rate8.  

5.1 Constrained Versus Unconstrained Optimization Methods: 

Figure 1.1 compare the results of the NSS model in terms of the Mean Absolute Yield Error 

(MAE), Mean Absolute Price Error (MAPE) and the standard deviation of the long term rate 

(𝛽0) and short term rate (𝛽0 + 𝛽1), when implemented using the constrained optimizer of 

COBLYA vis-à-vis the unconstrained optimizer of L-BFGS. Each of these optimizers were 

initialed which arbitrary starting parameters  such that the starting parameters and 

associated upper and lower bounds were not linked to historical interest rate behavior.  

The results suggest that the average MAE were lower when implementing the NSS model 

using BFGS versus COBLYA.  

  

                                                           
8
 A flowchart of the results under various combinations considered is provided in Annexure 1. 
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Figure 1.1. Comparison of MAE (Bps) using Alternative Optimistion Techniques  
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These results were supported by the tenor-wise analysis of MAE for the period in 

consideration under each alternative optimization technique (Table 8)9. 

Table 8: Tenor-Wise Comparison of MAE (Bps) using  Alternative Optimization Methods  

 Period 
2009-

10 
2010-

11 
2011-

12 
2012-

13 
2013
-14 

2014
-15 

2015
-16 

2016
-17 

2017
-18 

2018
-19 

2019
-20 

Full 
Period 

Panel A: COBYLA Optimization 
 0 To 5 9.60 11.94 14.79 11.46 16.04 18.19 10.25 6.93 5.12 10.74 7.78 11.26 
 5 To 10 16.01 12.58 12.86 9.44 14.20 12.56 9.35 8.88 9.22 10.50 8.70 11.54 
 10 To 15 12.46 8.18 8.02 5.11 6.96 9.52 5.45 8.96 10.38 8.67 5.66 8.27 
 15 To 20 26.43 21.28 23.71 15.50 7.00 13.53 10.11 7.93 8.67 15.42 5.60 14.00 
 20 To 40 25.01 21.15 27.73 22.18 9.04 20.18 15.00 10.80 10.42 17.51 7.13 16.29 

Panel B: BFGS Optimization 
 0 To 5 8.15 6.02 5.41 3.63 10.67 6.42 5.25 3.83 3.74 3.84 5.33 5.86 
 5 To 10 11.78 6.11 3.74 4.70 13.00 4.77 7.66 7.49 8.51 6.31 8.82 7.86 
 10 To 15 9.87 6.05 3.62 3.65 5.18 4.87 5.66 9.31 10.09 5.28 4.61 6.41 
 15 To 20 13.71 8.77 5.18 3.54 3.38 1.66 4.03 5.80 6.39 3.71 2.51 5.30 
 20 To 40 9.73 5.03 6.31 1.71 4.49 1.88 2.63 5.24 5.15 3.07 4.48 4.42 

 

The hit rates analysis (Table 9), which shows the percentage of securities that fall under a 

certain basis point error thresholds, for the MAE computed using COBYLA and BFGS, 

concurred with the earlier results.  

 
Table 9: Comparison of Hit Rates using  Alternative Optimization Methods  

 Threshold 
2009-

10 
2010-

11 
2011-

12 
2012-

13 
2013
-14 

2014
-15 

2015
-16 

2016
-17 

2017
-18 

2018
-19 

2019
-20 

Full 
Period 

Panel A: COBYLA Optimization 
3Bps 19.21 12.47 15.34 17.37 16.85 14.77 17.96 20.41 25.93 15.94 28.56 18.44 
5Bps 27.54 18.37 21.14 28.83 30.71 24.18 32.05 38.59 40.39 24.79 44.95 29.92 
7Bps 38.24 27.79 30.51 44.16 42.55 33.42 43.35 55.29 52.90 36.93 61.58 42.18 
10Bps 50.14 39.28 41.84 55.71 56.02 46.41 58.47 70.47 70.63 52.56 75.33 55.74 

Panel B: BFGS Optimization 
3Bps 27.96 35.68 47.81 49.22 32.18 47.96 37.55 36.62 33.55 47.14 39.62 38.90 
5Bps 39.48 50.55 68.71 74.12 46.14 67.10 59.03 55.60 49.34 66.70 58.02 56.88 
7Bps 47.54 59.76 79.52 85.48 59.22 77.83 73.64 71.65 65.33 83.36 71.33 69.59 
10Bps 62.28 76.89 88.43 95.77 71.62 87.59 86.20 82.71 80.48 91.33 82.62 81.61 

 

However, it is pertinent to note that although BFGS seemed to provide a lower MAE as 

compared to COBLYA, it was observed that the parameters of the short term and the long 

term rates for BFGS proved to be unstable with a much higher volatility (+/-1 standard  

                                                           
9
 A Comparison of MAPE is provided in Annexure 2. 
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 deviation). These results are highlighted in Figure 1.210. It was also observed that, while 

introducing more stringent boundary conditions, the parameters in case of BFGS often hit 

the upper and/or lower bound, suggesting model instability, which was not the case for 

COBLYA. It was therefore decided to fine tune the ZCYC model estimation using a 

constrained optimizer such as COBLYA. 

 

5.2 Choice of Starting Parameters 

The estimation in Section 5.1 above, considered the computing the ZCYC using arbitrary 

starting parameters of 𝛽0⁡and 𝛽1⁡. To test the sensitivity of the optimization result to the 

value of the initial parameters used in the NSS model specification, two additional 

alternatives were considered, viz. static and dynamic starting parameters, such that the 

value of these parameters were linked to historical  traded information. The MAE under 

each of these alternatives is provided in Figure 2.1. It was observed that linking the starting 

parameter values to the previous 6 moth historical traded information seemed to provide 

better results, with a MAE of around 7.5 bps, which was much lower than the MAE of 

around 11 bps obtained from choosing arbitrary starting parameters while implementing a 

constrained optimization such as COBLYA.  

                                                           
10 Vertical lines in Figure 1.2 represent the upper and lower bounds using mean and +/-1 standard deviation, 

where, red and blue dots show mean parameter values for BFGS and COBYLA, respectively. 

 

Figure 1.2. Comparison of Parameter Stability
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The results from choosing a 6-month rolling window for determining the starting 

parameters of 𝛽0⁡and 𝛽1 using traded information seemed to provide an edge over selecting 

a 6-month static window. The tenor-wise analysis of the MAE under each of these 

alternatives supported these results (Table 10). 

Table 10: Tenor-Wise Comparison of MAE using COBLYA under Alternative Starting Parameter Estimates 

 Period 
2009-

10 
2010-

11 
2011-

12 
2012-

13 
2013
-14 

2014
-15 

2015
-16 

2016
-17 

2017
-18 

2018
-19 

2019
-20 

Full 
Period 

Panel A: Static Starting Parameters 
 0 To 5 8.92 12.57 8.88 4.21 11.72 12.70 6.05 4.47 4.65 5.28 7.27 8.11 
 5 To 10 13.54 8.72 5.02 5.21 13.95 4.74 8.01 7.63 9.07 7.61 10.30 8.86 
 10 To 15 9.82 8.12 4.42 4.34 6.95 5.45 5.93 9.13 10.60 5.04 4.99 6.98 
 15 To 20 16.10 10.84 7.21 3.86 4.11 2.11 4.15 6.08 6.28 3.98 3.01 6.10 
 20 To 40 10.78 7.52 5.81 4.63 6.82 3.25 3.67 5.93 7.02 6.62 7.98 6.34 

Panel B: Dynamic Starting Parameters 
 0 To 5 9.43 10.02 8.80 4.40 13.00 12.60 6.05 4.49 4.59 5.10 7.33 8.01 
 5 To 10 13.82 7.60 4.72 5.08 13.10 4.71 8.17 7.48 8.93 7.09 10.46 8.59 
 10 To 15 9.81 7.40 4.60 4.14 6.96 5.56 5.93 9.21 10.51 5.63 4.69 6.93 
 15 To 20 15.67 9.17 7.46 3.83 4.80 2.43 3.76 6.01 6.20 4.00 3.19 6.00 
 20 To 40 11.41 6.65 5.05 3.99 7.95 2.72 3.05 5.50 6.23 5.03 8.16 5.90 

A comparison of the hit rates under each of these alternatives is provided in Table 11, with 

around 75% of the total number of securities having a MAE less than10 bps in each case. 

Table 11: Comparison of Hit Rates using COBLYA under Alternative Starting Parameter Estimates 

 Period 
2009-

10 
2010-

11 
2011-

12 
2012-

13 
2013
-14 

2014
-15 

2015
-16 

2016
-17 

2017
-18 

2018
-19 

2019
-20 

Full 
Period 

Panel A: Static Starting Parameters 
3Bps 22.73 18.38 35.41 44.05 23.95 38.33 35.97 35.57 29.31 37.11 30.76 31.39 
5 Bps 36.19 29.20 54.06 63.19 38.68 57.95 52.80 51.26 46.75 54.49 48.20 47.67 
7Bps 48.39 43.56 68.24 79.32 49.61 68.97 68.35 68.13 60.63 68.57 60.78 61.48 
10 Bps 57.07 59.93 81.02 90.51 64.92 82.76 84.28 81.68 72.71 85.61 72.29 74.94 

Panel B: Dynamic Starting Parameters 
3Bps 19.10 26.43 36.71 42.12 23.52 38.65 33.45 35.42 30.15 37.62 30.38 31.60 
5 Bps 36.14 37.23 54.89 64.19 38.49 57.67 52.74 51.14 46.74 59.77 48.43 49.04 
7Bps 47.12 46.36 68.70 81.83 49.99 69.51 68.68 66.03 60.14 73.00 62.35 62.32 
10 Bps 56.45 65.86 83.61 90.61 65.10 82.23 84.17 81.92 73.32 86.42 72.38 75.90 
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Figure 2.1. Comparison of MAE Using Alternative Starting Parameter Inputs (Bps) 
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A similar behavior of parameter stability was observed in each of the alternative methods 

considered (Figure 2.2)  

 
The constrained optimization technique of COBLYA using dynamic starting parameters was 

therefore selected for further analysis in the ZCYC estimation. 

5.3 ZCYC Using Alternative Objective Functions 

To improve the model fit, certain characteristics of the securities used in the input sample 

such as their liquidity were taken into consideration while formulating the objective 

function. The objective function was also modified to take into account the distribution 

behavior of the errors.  The results are highlighted in Figure 3.1.  

While following a liquidity-weighted scheme in the objective function did not seem to 

improve the results of the ZCYC model estimation11, factoring the distribution of the yield 

errors seemed to provide better results. The MAE improved from around 7.50 bps when 

using an unweighted scheme to 7.27 bps and 7.01 bps when using the Lorentzian an M-

estimation weighted objective function respectively. 

  

                                                           
11

 In fact, the MAE increased to around 11 bps using a liquidity weighted scheme versus 7.5 bps following an 
unweighted scheme in the objective function specification. 

Figure 2.2. Comparison of Parameter Stability
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A comparison of the tenor wise MAE with the associated Hit Rates is provided in Table 12 

and Table 13 respectively. Amongst each of the alternative specifications considered, the 

tenor-wise comparison suggests that the M-estimation based weights seemed to improve 

the results with a lower MAE as compared to an unweighted scheme. 

Table 12: Tenor-Wise Comparison of MAE (Bps) using  COBLYA  under Alternative Weighting Schemes (with Dynamic 
Para.) 

 Period 
2009-

10 
2010-

11 
2011-

12 
2012-

13 
2013-

14 
2014-

15 
2015-

16 
2016-

17 
2017
-18 

2018-
19 

2019-
20 

Full 
Period 

Panel A: Unweighted Errors 
 0 To 5 9.60 11.94 14.79 11.46 16.04 18.19 10.25 6.93 5.12 10.74 7.78 11.26 
 5 To 10 16.01 12.58 12.86 9.44 14.20 12.56 9.35 8.88 9.22 10.50 8.70 11.54 
 10 To 15 12.46 8.18 8.02 5.11 6.96 9.52 5.45 8.96 10.38 8.67 5.66 8.27 
 15 To 20 26.43 21.28 23.71 15.50 7.00 13.53 10.11 7.93 8.67 15.42 5.60 14.00 
 20 To 40 25.01 21.15 27.73 22.18 9.04 20.18 15.00 10.80 10.42 17.51 7.13 16.29 

Panel B: Liquidity Based Weighted Errors 
 0 To 5 13.87 12.68 13.00 6.45 14.73 11.57 7.49 7.78 5.84 7.88 7.78 10.11 
 5 To 10 12.60 7.80 3.75 5.86 17.16 6.01 11.55 10.77 16.04 8.69 16.42 10.93 
 10 To 15 18.04 5.87 5.23 4.23 14.46 8.14 11.04 13.61 20.78 9.27 17.39 11.89 
 15 To 20 35.65 22.06 15.91 10.08 14.97 5.87 12.08 15.87 19.95 13.03 15.53 16.30 
 20 To 40 34.46 19.03 12.76 10.78 12.75 4.96 10.34 16.39 24.17 14.04 13.29 15.50 

Panel C: Lorengian Weighted Errors 
 0 To 5 9.48 9.90 7.46 4.32 12.08 11.15 5.91 4.33 4.64 5.15 7.45 7.65 
 5 To 10 13.88 7.49 4.99 5.33 13.59 4.76 8.21 7.48 8.96 7.05 10.73 8.70 
 10 To 15 9.84 7.41 4.37 4.28 6.84 5.42 5.91 9.25 10.45 5.70 4.95 6.92 
 15 To 20 14.91 9.24 7.66 3.83 4.37 2.10 3.82 6.03 6.21 4.03 3.13 5.89 
 20 To 40 10.91 6.86 4.12 4.14 7.79 2.51 2.95 5.41 6.49 4.72 9.33 5.87 

Panel D: Huber’s M-estimates Based Weighted Errors 
 0 To 5 8.93 9.57 7.57 4.10 11.77 11.32 5.78 4.18 4.23 4.84 6.86 7.39 
 5 To 10 13.71 6.93 4.59 5.02 12.89 4.45 7.97 7.51 8.80 6.94 10.42 8.41 
 10 To 15 9.58 7.29 4.38 4.20 6.85 5.27 5.75 9.17 10.23 5.53 4.45 6.74 
 15 To 20 14.16 9.29 7.27 3.34 3.78 1.99 3.50 5.82 6.16 3.26 2.95 5.54 
 20 To 40 9.76 6.42 4.26 3.42 7.17 2.53 2.88 5.37 5.88 4.99 8.27 5.47 
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Figure 3.1.Comparison of MAE (Bps)  using Alternative Objective Functions with 

Dynamic Starting Parameters  
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Table 13: Comparison of Hit Rates using COBLYA under Alternative Weighting Schemes (with Dynamic 
Para.) 

 Peri
od 

2009-
10 

2010-
11 

2011-
12 

2012-
13 

2013-
14 

2014-
15 

2015-
16 

2016-
17 

2017
-18 

2018-
19 

2019-
20 

Full 
Period 

Panel A: Unweighted Errors 
3 Bps 19.21 12.47 15.34 17.37 16.85 14.77 17.96 20.41 25.93 15.94 28.56 18.44 
5 Bps 27.54 18.37 21.14 28.83 30.71 24.18 32.05 38.59 40.39 24.79 44.95 29.92 
7 Bps 38.24 27.79 30.51 44.16 42.55 33.42 43.35 55.29 52.90 36.93 61.58 42.18 
10 Bps 50.14 39.28 41.84 55.71 56.02 46.41 58.47 70.47 70.63 52.56 75.33 55.74 

Panel B: Liquidity Based Weighted Errors 
3 Bps 18.02 22.60 28.06 25.16 12.40 22.56 18.37 20.99 21.21 21.75 14.33 20.24 
5 Bps 26.80 34.49 52.43 42.30 19.33 39.64 27.60 31.91 29.17 34.99 24.81 32.55 
7 Bps 34.60 42.63 60.96 62.01 29.79 57.81 38.33 40.99 36.23 45.82 39.13 43.71 
10 Bps 44.24 55.07 73.53 80.69 43.60 77.56 51.98 54.11 44.14 64.29 53.53 57.59 

Panel C: Lorengian Weighted Errors 
3 Bps 19.09 24.21 40.38 44.92 25.16 38.94 33.02 35.14 29.96 38.82 28.65 32.06 
5 Bps 34.36 38.15 56.64 66.86 37.28 58.75 53.56 53.58 45.68 58.08 46.76 49.27 
7 Bps 47.24 45.48 68.48 79.31 51.17 69.82 69.75 67.01 60.22 73.46 61.29 62.35 
10 Bps 56.66 67.07 84.64 91.87 66.60 83.87 82.84 82.18 73.03 85.35 71.97 76.29 

Panel D: Huber’s M-estimates Based Weighted Errors 
3 Bps 29.34 31.03 39.93 49.16 29.69 44.13 36.00 38.21 34.97 43.07 34.40 36.79 
5 Bps 41.04 39.54 57.71 69.40 44.07 61.18 57.27 54.50 48.84 61.58 52.70 52.99 
7 Bps 49.58 50.69 69.82 81.42 55.07 72.90 70.70 67.99 63.21 75.11 63.79 64.90 
10 Bps 58.67 69.48 85.88 91.25 69.84 83.99 84.33 83.51 75.62 87.10 73.33 77.80 

 

Figure 3.2 confirms the parameter stability of the Long term and short term rates under 

each alternative objective function estimated. 

Figure 3.2 Comparison of Parameter Stability 

 

Based on the above analysis, the M-Estimation weight based objective function was 

selected for further fine tuning of the ZCYC model estimation. 

5.4 ZCYC Using Alternative Price Inputs 

Three alternatives were considered to test the impact of input price in the NSS model, the 

Full Day’s Volume Weighted Average Price (VWAP), the VWAP of last three trades, on given 

Figure 4.2. Comparison of Parameters
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day is used as price input in model and the VWAP of securities traded in last hour for the 

day. Figure 4.1 highlights that the MAE when using the price from the last hour of trading 

improved (6.30 bps) as compared to MAE derived from using the price for the full day (7.01 

bps). 

Figure 4.1 Comparison of MAE under Alternative Price inputs 

 

The tenor wise analysis of the MAE concurred with these results (Table 14) with a marginal 

improvement in the hit rates (Table 15). 

Table 14: Tenor-Wise Comparison of MAE (Bps) under Alternative Data Filtering Samples  

 Period 
2009-

10 
2010-

11 
2011-

12 
2012-

13 
2013-

14 
2014-

15 
2015-

16 
2016-

17 
2017-

18 
2018
-19 

2019
-20 

Full 
Period 

Panel A: Full Day’s Trades   
 0 To 5 8.93 9.57 7.57 4.10 11.77 11.32 5.78 4.18 4.23 4.84 6.86 7.39 
 5 To 10 13.71 6.93 4.59 5.02 12.89 4.45 7.97 7.51 8.80 6.94 10.42 8.41 
 10 To 15 9.58 7.29 4.38 4.20 6.85 5.27 5.75 9.17 10.23 5.53 4.45 6.74 
 15 To 20 14.16 9.29 7.27 3.34 3.78 1.99 3.50 5.82 6.16 3.26 2.95 5.54 
 20 To 40 9.76 6.42 4.26 3.42 7.17 2.53 2.88 5.37 5.88 4.99 8.27 5.47 

Panel B: Last 3 Trades 
 0 To 5 9.43 9.88 5.07 4.05 12.53 11.83 5.79 4.25 4.27 4.94 6.76 7.36 
 5 To 10 13.60 7.35 4.72 5.16 13.32 4.55 7.74 7.41 8.97 7.00 10.35 8.51 
 10 To 15 10.00 7.32 4.38 4.64 6.37 5.11 5.72 9.06 10.63 5.57 4.48 6.80 
 15 To 20 14.00 8.80 7.79 3.51 3.81 2.25 3.36 5.82 6.07 3.59 2.77 5.57 
 20 To 40 10.52 6.31 4.14 3.67 7.19 2.60 3.07 5.62 6.01 5.78 8.36 5.71 

Panel C: Last Hour of Trading 
 0 To 5 5.15 5.41 2.70 1.81 5.14 2.73 4.79 3.67 3.50 3.98 6.58 4.47 
 5 To 10 13.72 8.99 5.55 5.62 12.40 4.60 8.16 7.57 8.57 8.67 10.95 8.94 
 10 To 15 9.27 6.38 1.93 3.23 6.46 5.62 6.09 8.40 10.13 4.47 4.93 6.27 
 15 To 20 15.76 11.73 8.96 3.76 4.01 1.90 3.85 4.82 6.20 5.35 3.06 6.16 
 20 To 40 5.56 3.62 5.37 3.92 7.18 1.86 1.93 5.18 6.40 7.31 6.39 4.91 
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Table 15: Comparison of Hit Rates using COBLYA under Alternative Data Filtering Samples with Dynamic 
Para. And M-estimator 

 Period 
2009-

10 
2010-

11 
2011-

12 
2012-

13 
2013-

14 
2014-

15 
2015-

16 
2016-

17 
2017-

18 
2018
-19 

2019
-20 

Full 
Period 

Panel A: Full Day’s Trades   
3 Bps 29.34 31.03 39.93 49.16 29.69 44.13 36.00 38.21 34.97 43.07 34.40 36.79 
5 Bps 41.04 39.54 57.71 69.40 44.07 61.18 57.27 54.50 48.84 61.58 52.70 52.99 
7Bps 49.58 50.69 69.82 81.42 55.07 72.90 70.70 67.99 63.21 75.11 63.79 64.90 
10 Bps 58.67 69.48 85.88 91.25 69.84 83.99 84.33 83.51 75.62 87.10 73.33 77.80 

Panel B: Last 3 Trades 
3 Bps 24.37 31.50 41.22 49.25 27.73 42.82 36.73 37.85 36.98 40.11 35.69 36.11 
5 Bps 34.54 40.92 58.63 67.31 43.38 60.38 56.21 53.50 50.03 58.41 52.85 51.71 
7 Bps 45.83 51.73 68.57 80.05 54.50 71.98 72.00 68.92 61.62 75.21 64.46 64.39 

10 Bps 57.94 66.66 83.76 91.44 71.89 83.42 84.93 82.71 75.26 85.62 74.06 77.33 

Panel C: Last Hour of Trading 
3 Bps 30.86 32.38 51.28 52.81 31.81 47.78 34.94 38.95 31.58 43.19 30.17 38.52 
5 Bps 45.46 50.15 64.40 71.22 50.28 69.09 56.10 56.06 48.48 62.12 47.16 55.84 
7 Bps 53.42 63.86 72.87 79.92 62.09 80.78 74.13 69.02 65.19 74.65 60.13 68.03 

10 Bps 67.75 71.62 85.99 94.01 77.66 92.41 84.72 81.82 74.65 83.27 73.56 79.71 

 

Notwithstanding, in each of the price input alternatives a similar behavior in parameter 

stability was observed.  So as to capture the information content in the prices of the 

securities traded throughout the day, the VWAP of the entire day’s rate was considered for 

the purpose of daily estimation of the ZCYC model. 

Figure 4.2 Comparison of Parameter Stability 

 

To summarize the findings, it was observed that a constrained optimization was better 

suited in the ZCYC yield curve estimation vis-à-vis an unconstrained optimization. It was 

further observed that the optimization solution is often sensitive to the starting parameters 

selected while implementing the NSS model and was found that linking the starting 

parameter values of 𝛽0⁡and 𝛽1 to historical traded information could improve the 

estimation results. When evaluating the effectiveness of the objective function, it was found 

that adopting a weighting scheme based on the distributional properties of the yield errors 

at the time of estimation helped in lowering the MAE on an average. The input price used 

Figure 5.2 Comparison of Parameters
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was also found to be an important consideration in the ZCYC model estimation in terms of a 

lower MAE. However, the resultant parameters were found to be stable irrespective of the 

price input used. 

6 CREATING THE HISTORICAL DATABASE OF TERM STRUCTURE OF 

INTEREST RATES BASED ON NSS PARAMETERS 
Based on the analysis in section 5 above, the following specifications were incorporated for 

estimating the ZCYC in case of the Indian government bond market securities for a 

historical daily sample period of 2009-10 to 2019-20:  

 Use of a constrained optimization (COBYLA) technique. 

 Use of Rolling Starting Parameter values for 𝛽0⁡and 𝛽1 based on 6-month historical 

traded information. 

 Use of an objective function specification based on M-estimation-weighted errors to 

account for the distribution of the errors. 

 Use of a Value Weighted Average Price of securities trades across the entire day. 

6.1 NSS Parameter Stability 

NSS model was implemented to arrive at the estimated values of the parameters based on 

the above criteria. The behavior of the long run parameter (𝛽0) and the short run 

parameter (𝛽0 + 𝛽1) are provided in Figure 5 and Figure 6 respectively. The long term 

parameter was on an average in the range of 6.30%-9.05% while the short term rate was 

on an average in the range of 2.59%-10.61%, indicating a greater variation in the short end 

of the curve vis-à-vis the long end of the curve during the period in consideration.  

A comparison of the monthly variation as depicted by the monthly maximum value (blue 

line) over the monthly minimum value (green line) suggests that the daily long term and 

short term parameters were found to be relatively stable over a given month. It is pertinent 

to note however that both the long term and short term parameters do evolve over time. 
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Figure 5: Monthly Average of the Daily Long Term Rate (𝛽0) 
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Figure 7 and Figure 8 represent stability of tau1 (1) and tau2 (2) parameters respectively. 

The tau parameters determine position of hump on the yield curve. Where, shows first 

point of inflection at shorter end of the yield curve and 2 shows position of second hump 

at longer end on the yield curve. The 1 parameter was in the range of (0.72-2.22) and 2 

parameter was in the range of (18.47-38.27). 
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Figure 6: Monthly Average of the Daily ShortTerm Rate (𝛽0+𝛽1) 
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6.2 Evolution of the Term Structure 

The estimated NSS parameters were used to derive the model YTM curve for the period of 

2009-10 to 2019-20. As a preliminary analysis, a comparison of the daily YTM of the traded 

10 year government bond with the 10-year YTM implied from the NSS ZCYC curve was 

made (Figure 9). The results reveal that the NSS specification effectively modelled the 10 

year traded rate. 

 

The evolution of the term structure over the entire period of 2009-10 to 2019-20 is 

provided in Figure 10. The figure captures the different shapes of the YTM term structure 

over the period considered, such as upwards sloping, flat, inverted curve etc. The figure 

also captures the overall decline in the level of the curve. 

 
Figure 10: Term Structure of the Model YTM Rates 
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Figure 9: Comparison of 10 Year Traded YTM v/s Model YTM 
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Figure 11 illustrates the term structure of the spot rates that was estimated from the NSS 

model and used for deriving the implied YTM curve. A spot rate represents the  rate used to 

arrive at the discounted present value of a Rupee for a given maturity on the term 

structure. 

Figure 11: Term Structure of the Spot Rates 

 

The evolution of the Par curve over the entire period is provided in Figure 12. The Par 

curve is a representation of the yield to maturity implied from the spot curve under the 

assumption that the bond is traded at par (i.e. the bond price is fixed at 100). The Par curve 

is a useful indicator for market participants to determine what the coupon of a newly 

issued bond could be for a specific maturity on the curve on any given day. 

Figure 12: Term Structure of the Par Rates 
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The yield curve is also often used as a tool for forecasting expected interest rates 
movements. For example, the spot rates of 1 month and 2 month can be used for deriving 
the 1 month implied forward rate a month later. Using the spot curve, the 1-month ahead 
forward curve was implied for the period in consideration.  The results are illustrated in 
Figure 13. 

 
Figure 13: Term Structure of the Forward Rates 

 

6.3 Price and Yield Error Analysis 

Based on the estimated term structure, the model price/yield of the securities were 

estimated and compared with the traded price/yield. The monthly average of daily mean 

absolute yield errors and price errors over the entire period with the associated the 

standard deviations are provided in Figure 14 and Figure 15 respectively.  
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Figure 14: Monthly Average and Standard Devation of Daily Mean Absolute 
Yield Errors (MAE) 
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In the Figure 14, monthly average and standard deviation of MAE is high at point A and B. A 

higher MAE can be result of increased fluctuations in the government securities market or 

can be related to a particular security. A detailed analysis revealed that a spike at point A 

represents effect of inclusion of short term to maturity security in a data sample for 

particular day. The yield of short term to maturity security is highly sensitive to small price 

change. Hence calculating yield of such security from modelled price is result in larger 

error. Some literature suggests exclusion of such short term to maturity security from 

model estimation process.  

The government security yields are generally impacted by various macro-economic factors. 

The point B in Figure 14, exhibits increased volatility in the government securities market, 

during May-Jun 2013, due to taper tantrum of US Federal Reserve. The Fed’s taper tantrum 

altered global monetary and financial conditions dramatically with spillovers in the Indian 

markets. The RBI had reacted with tightened liquidity and increased interest rate in order 

to safeguard the domestic currency. Three specific monetary measures were announced by 

RBI to tightened liquidity conditions: a) Marginal Standing Facility (MSF) rate was fixed at 

300bps, b) access to overnight liquidity from RBI was restricted to 1 percent of Net 

Demand and Time Liabilities (NDTL) of the banking system, and c) announcement of open 

market sales of 120 billion. 

 

A tenor-wise comparison of the mean absolute price errors are provided in Table 16. The 

results suggest that the price errors on an average were around Rs.0.07 for securities less 

than 1 year, around Rs. 0.36 for securities between 5 years to 10 years and around Rs. 0.54 

for greater than 15 years.  
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Figure 15: Monthly Average and Standard Devation of Daily Mean Absolute Price 
Errors (MAPE) 
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Table 16: Yearly Average of Daily Mean Absolute Price Errors  (Rs.) 

Year 
2009- 

10 
2010- 

11 
2011- 

12 
2012- 

13 
2013- 

14 
2014- 

15 
2015- 

16 
2016- 

17 
2017- 

18 
2018- 

19 
2019- 

20 
2009- 

20 

0 To 5 Yrs. 0.1446 0.1167 0.0455 0.0408 0.0951 0.0776 0.0674 0.0673 0.0784 0.0585 0.0816 0.0795 

5 To 10 Yrs. 0.8265 0.4504 0.3590 0.3123 0.3569 0.1026 0.2259 0.2993 0.2970 0.2138 0.5149 0.3608 

10 To 15 Yrs. 0.8654 0.6039 0.3136 0.4278 0.4258 0.1453 0.1403 0.5293 0.3607 0.2264 0.3069 0.3979 

15 To 20 Yrs. 1.1335 0.8704 0.6940 0.2884 0.3261 0.2615 0.2759 0.5212 0.6520 0.3006 0.5490 0.5419 

20 to 40 Yrs. 0.6225 0.5938 0.4552 0.3840 0.5497 0.4137 0.3105 0.8654 0.6864 0.4847 0.4965 0.5274 

7 CONCLUSION 
This paper uses the Nelson Siegel Svensson (NSS) specification to estimate the term 

structure for the Indian government securities market. The study addresses key modelling 

issues at the time of implementation that would influence the performance of the NSS 

model. The key issues addressed include: 

 The selection of the optimisation algorithm: This study examined the fit of the NSS 

model under alternative optimisation algorithms. The choice between a constrained 

versus an unconstrained optimisation technique and its impact on the parameter 

stability is explored. 

  The choice of starting parameter values: There has been little guidance in term 

structure literature on the ideal value of the starting parameters used to initialise an 

optimisation technique for yield curve estimation. This study puts in place alternative 

methods to determine the starting parameter values at the time of implementing the 

NSS model.  

 The specification of the objective function:  The results of the yield curve estimation are 

also compared by way of implementing various objective function specifications.  At the 

time of minimising the sum of squared errors between the traded and model yields,   

this paper applies alternative weighting schemes in the objective function of the model 

by taking into account the size as well as the distribution of the errors.  

 The Input Price Specification:  Datasets are created based on entire days’ trades, the last 

3 trades and the last hour trades to examine the fit of the NSS model and the resulting 

parameter stability. 

 

The yield curve was estimated under each specification of the objective function, the 

optimization, the starting parameter selection and the choice of the input price; to zero-in 

on a combination that would provide a best fit as well as parameter stability while 

implementing the NSS model. 
 

On estimation of the ZCYC using the NSS model it was observed that a constrained 

optimization was better suited in the ZCYC yield curve estimation vis-à-vis an 

unconstrained optimization. It was further observed that the optimization solution is often 
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sensitive to the starting parameters selected while implementing the NSS model and was 

found that linking the starting parameter values of 𝛽0⁡and 𝛽1 to historical traded 

information could improve the estimation results.  
 

When evaluating the effectiveness of the objective function, it was found that adopting a 

weighting scheme based on the distributional properties of the yield errors at the time of 

estimation helped in lowering the MAE on an average. The input price used was also found 

to be an important consideration in the ZCYC model estimation in terms of lowering the 

MAE. However, the resultant parameters were found to be stable irrespective of the price 

input used. 

Based on the filtering criteria, the NSS model was estimated using a daily data sample of 

2009-10 to 2019-2012. The parameters associated with the long term and short term rates 

were found to be relatively stable during the period considered. The parameters were then 

used to estimate the historical interest rate term structure for the Indian government bond 

market.  The results of the model YTM curve, the spot curve, the par curve and the forward 

curve were compared. The Mean Absolute Yield Error and Mean Absolute Price Error was 

then estimated to evaluate the effectiveness of the model. 

This study has put in place a detailed framework for selection of appropriate filters to the 

data input and model specifications that is essential for implementing the NSS model while 

deriving the yield curve for the Indian government securities market. The study further 

computes the daily interest rates term structure for over a decade to arrive at security wise 

price/yield errors. The study attempts to provide insights into micro structure issues in the 

ZCYC estimation tested for IGBs. The analysis presented here serves as a useful resource 

for future research areas such as analyzing the relationship of the historical NSS parameter 

values with macro-economic variables, determinants of factors affecting price/yield errors, 

interest rate forecasting, valuation for Indian government bond markets etc. 

  

                                                           
12

 The dataset is available on CCIL website along with this working paper. 
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ANNEXURE 1 

Flow Chart of Mean Absolute Yield Error (Bps) and Stdev. of NSS Model Parameters using Alternative 

Combinations (Jan 2009 to Mar 2020) 
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ANNEXURE 2 

Comparison of MAPE under Alternative Model Specifications 
Table A1 : Tenor-Wise Comparison of MAPE using  Alternative Optimization Methods  

 Period 
2009-

10 
2010-

11 
2011-

12 
2012-

13 
2013
-14 

2014
-15 

2015
-16 

2016
-17 

2017
-18 

2018
-19 

2019
-20 

Full 
Period 

Panel A: COBYLA Optimization 
 0 To 5 0.14 0.15 0.18 0.19 0.11 0.17 0.16 0.10 0.08 0.18 0.12 0.15 
 5 To 10 0.96 0.69 0.67 0.51 0.81 0.62 0.55 0.54 0.56 0.60 0.53 0.66 
 10 To 15 0.96 0.61 0.58 0.41 0.51 0.72 0.45 0.76 0.85 0.68 0.49 0.65 
 15 To 20 2.55 1.92 2.07 1.48 0.65 1.23 0.95 0.81 0.84 1.36 0.55 1.30 
 20 To 40 2.65 2.25 2.85 2.42 0.96 2.25 1.74 1.38 1.29 1.93 0.94 1.82 

Panel B: BFGS Optimization 
 0 To 5 0.11 0.11 0.05 0.04 0.07 0.04 0.06 0.05 0.05 0.06 0.07 0.07 
 5 To 10 0.71 0.35 0.21 0.27 0.75 0.27 0.45 0.46 0.53 0.38 0.54 0.47 
 10 To 15 0.77 0.45 0.27 0.29 0.38 0.37 0.46 0.79 0.83 0.40 0.40 0.51 
 15 To 20 1.33 0.78 0.44 0.33 0.30 0.15 0.38 0.59 0.61 0.32 0.25 0.50 
 20 To 40 1.01 0.52 0.66 0.18 0.44 0.21 0.30 0.67 0.63 0.34 0.59 0.50 

 

Table A2: Tenor-Wise Comparison of MAPE using COBLYA under  Alternative Starting Parameter Estimates 

 Period 
2009-

10 
2010-

11 
2011-

12 
2012-

13 
2013
-14 

2014
-15 

2015
-16 

2016
-17 

2017
-18 

2018
-19 

2019
-20 

Full 
Period 

Panel A: Static Starting Parameters 
 0 To 5 0.12 0.18 0.05 0.05 0.09 0.06 0.07 0.05 0.06 0.07 0.10 0.09 
 5 To 10 0.81 0.49 0.29 0.30 0.79 0.26 0.47 0.47 0.57 0.45 0.62 0.52 
 10 To 15 0.76 0.61 0.32 0.34 0.51 0.41 0.48 0.77 0.87 0.39 0.43 0.55 
 15 To 20 1.55 0.97 0.62 0.37 0.37 0.19 0.39 0.62 0.59 0.34 0.30 0.57 
 20 To 40 1.13 0.78 0.57 0.49 0.67 0.36 0.42 0.76 0.83 0.72 1.04 0.71 

Panel B: Dynamic Starting Parameters 
 0 To 5 0.13 0.14 0.05 0.05 0.09 0.07 0.07 0.06 0.06 0.07 0.10 0.08 
 5 To 10 0.83 0.44 0.28 0.29 0.75 0.26 0.48 0.46 0.56 0.42 0.63 0.51 
 10 To 15 0.76 0.56 0.34 0.33 0.51 0.42 0.48 0.78 0.86 0.43 0.41 0.55 
 15 To 20 1.51 0.82 0.64 0.37 0.42 0.22 0.35 0.61 0.59 0.34 0.32 0.56 
 20 To 40 1.19 0.69 0.50 0.42 0.78 0.30 0.35 0.71 0.74 0.57 1.06 0.66 

 

Table A3: Tenor-Wise Comparison of MAPE using  COBLYA  under Alternative Weighting Schemes (with 
Dynamic Para.) 

 Period 
2009-

10 
2010-

11 
2011-

12 
2012-

13 
2013-

14 
2014-

15 
2015-

16 
2016-

17 
2017
-18 

2018-
19 

2019-
20 

Full 
Period 

Panel A: Unweighted Errors 
 0 To 5 0.14 0.15 0.18 0.19 0.11 0.17 0.16 0.10 0.08 0.18 0.12 0.15 
 5 To 10 0.96 0.69 0.67 0.51 0.81 0.62 0.55 0.54 0.56 0.60 0.53 0.66 
 10 To 15 0.96 0.61 0.58 0.41 0.51 0.72 0.45 0.76 0.85 0.68 0.49 0.65 
 15 To 20 2.55 1.92 2.07 1.48 0.65 1.23 0.95 0.81 0.84 1.36 0.55 1.30 
 20 To 40 2.65 2.25 2.85 2.42 0.96 2.25 1.74 1.38 1.29 1.93 0.94 1.82 

Panel B: Liquidity Based Weighted Errors 
 0 To 5 0.21 0.15 0.07 0.08 0.11 0.05 0.10 0.10 0.10 0.10 0.09 0.11 
 5 To 10 0.74 0.42 0.19 0.33 0.93 0.33 0.64 0.62 0.97 0.50 0.94 0.62 
 10 To 15 1.37 0.44 0.35 0.32 0.97 0.61 0.83 1.11 1.68 0.69 1.42 0.91 
 15 To 20 3.35 1.97 1.32 0.89 1.23 0.55 1.04 1.56 1.86 1.12 1.44 1.47 
 20 To 40 3.45 1.97 1.22 1.04 1.23 0.66 1.02 2.03 2.87 1.54 1.72 1.69 
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Panel C: Lorengian Weighted Errors 
 0 To 5 0.13 0.14 0.05 0.05 0.09 0.06 0.07 0.05 0.06 0.07 0.10 0.08 
 5 To 10 0.83 0.43 0.29 0.30 0.78 0.26 0.48 0.46 0.56 0.42 0.65 0.52 
 10 To 15 0.76 0.56 0.32 0.33 0.50 0.41 0.48 0.78 0.85 0.44 0.43 0.55 
 15 To 20 1.44 0.82 0.66 0.36 0.39 0.19 0.36 0.61 0.59 0.35 0.31 0.55 
 20 To 40 1.14 0.71 0.40 0.44 0.77 0.28 0.34 0.69 0.77 0.53 1.22 0.66 

Panel D: Huber’s M-estimates Based Weighted Errors 
 0 To 5 0.12 0.14 0.05 0.04 0.09 0.07 0.07 0.05 0.06 0.06 0.09 0.08 
 5 To 10 0.84 0.40 0.27 0.29 0.75 0.25 0.46 0.47 0.55 0.42 0.62 0.50 
 10 To 15 0.72 0.56 0.33 0.36 0.51 0.38 0.45 0.77 0.81 0.44 0.39 0.53 
 15 To 20 1.28 0.80 0.60 0.28 0.27 0.18 0.33 0.57 0.59 0.27 0.29 0.49 
 20 To 40 0.95 0.69 0.42 0.32 0.69 0.30 0.34 0.67 0.69 0.55 1.06 0.60 

 

Table A4: Tenor-Wise Comparison of MAPE using  COBLYA  under Alternative Data Filtering Samples with 
Dynamic Para. And M-estimator 

 Period 
2009-

10 
2010-

11 
2011-

12 
2012-

13 
2013-

14 
2014-

15 
2015-

16 
2016-

17 
2017-

18 
2018
-19 

2019
-20 

Full 
Period 

Panel A: Full Day’s Trades   
 0 To 5 0.12 0.14 0.05 0.04 0.09 0.07 0.07 0.05 0.06 0.06 0.09 0.08 
 5 To 10 0.84 0.40 0.27 0.29 0.75 0.25 0.46 0.47 0.55 0.42 0.62 0.50 
 10 To 15 0.72 0.56 0.33 0.36 0.51 0.38 0.45 0.77 0.81 0.44 0.39 0.53 
 15 To 20 1.28 0.80 0.60 0.28 0.27 0.18 0.33 0.57 0.59 0.27 0.29 0.49 
 20 To 40 0.95 0.69 0.42 0.32 0.69 0.30 0.34 0.67 0.69 0.55 1.06 0.60 

Panel B: Last 3 Trades 
 0 To 5 0.13 0.15 0.04 0.04 0.09 0.07 0.07 0.05 0.06 0.06 0.09 0.08 
 5 To 10 0.84 0.42 0.27 0.29 0.76 0.26 0.45 0.47 0.56 0.42 0.61 0.51 
 10 To 15 0.75 0.56 0.31 0.39 0.47 0.36 0.45 0.76 0.84 0.45 0.39 0.53 
 15 To 20 1.25 0.76 0.68 0.29 0.31 0.21 0.31 0.56 0.59 0.31 0.28 0.50 

 20 To 40 1.02 0.69 0.43 0.35 0.71 0.30 0.37 0.70 0.69 0.61 1.08 0.63 

Panel C: Last Hour of Trading 
 0 To 5 0.10 0.18 0.03 0.05 0.07 0.05 0.07 0.07 0.07 0.07 0.12 0.09 
 5 To 10 0.82 0.52 0.34 0.33 0.72 0.26 0.50 0.48 0.54 0.55 0.67 0.55 
 10 To 15 0.77 0.48 0.11 0.25 0.49 0.43 0.48 0.72 0.82 0.41 0.39 0.50 
 15 To 20 1.47 1.05 0.79 0.32 0.33 0.16 0.34 0.50 0.63 0.46 0.27 0.56 

 20 To 40 0.47 0.29 0.53 0.41 0.69 0.21 0.25 0.64 0.70 0.74 0.82 0.52 

 

 


